Quantum White Noise Derivatives and Transformations

Un Cig Ji
 Chungbuk National University

REFERENCES

[1] U. C. Ji and N. Obata: Annihilation-derivative, creation-derivative and representation of quantum martingales, Commun. Math. Phys. 286 (2009), 751-775.
[2] U. C. Ji and N. Obata: Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives, preprint, 2010.
[3] U. C. Ji and N. Obata: Unitary equivalence of basic quantum stochastic processes and quantum Girsanov theorem, preprint, 2010.

International Conference on
Quantum Probability and Related Topics
August 14-17, 2010
JNCASR, Bangalore

CONTENTS

- Quantum White Noise Theory
- Quantum White Noise Derivatives
- Wick Derivations
- Differential Equations Associated with Wick Derivations
- Implementation Problems
- Bogoliubov transformation
- Quantum Extension of Girsanov Theorem
- Unitary Transformations

Rigging of Boson Fock Space

We start with the Hilbert space $H=L^{2}(\mathbf{R}, d t)$ with norm $|\cdot|_{0}$.
Let $A=1+t^{2}-\frac{d^{2}}{d t^{2}}$ be the harmonic oscillator. For each $p \geq 0$ we put

$$
E_{p} \equiv \operatorname{Dom}\left(A^{p}\right) \subset H ; \quad E_{-p}=E_{p}^{*}
$$

$$
\mathscr{S}(\mathbf{R}) \cong E \equiv \underset{p \rightarrow \infty}{\operatorname{proj} \lim } E_{p} \subset E_{p} \subset H \subset E_{-p} \subset \underset{p \rightarrow \infty}{\operatorname{ind} \lim } E_{-p} \equiv E^{*} \cong \mathscr{S}^{\prime}(\mathbf{R})
$$

By taking Boson Fock spaces and their (projective and inductive) limit spaces, we have

$$
(E)=\underset{p \rightarrow \infty}{\operatorname{proj} \lim } \Gamma\left(E_{p}\right) \subset \Gamma(H)=\bigoplus_{n=0}^{\infty} H^{\widehat{\otimes} n} \subset(E)^{*}=\underset{p \rightarrow \infty}{\operatorname{ind} \lim } \Gamma\left(E_{-p}\right),
$$

where $\Gamma(H)$ is the Boson Fock space over H is defined by

$$
\Gamma(H)=\left\{\phi=\left(f_{n}\right)_{n=0}^{\infty} ; f_{n} \in H^{\widehat{\otimes} n},\|\phi\|_{0}^{2}=\sum_{n=0}^{\infty} n!\left|f_{n}\right|_{0}^{2}<\infty\right\}
$$

and so we have the nuclear Rigging of Boson Fock space

$$
(E) \subset \Gamma(H) \subset(E)^{*}
$$

White Noise Operators

White Noise Operators

- An element of $\mathscr{L}\left((E),(E)^{*}\right)$ is called a white noise operator which is a kind of generalized operator based on the Gelfand triple:

$$
(E) \subset \Gamma(H) \subset(E)^{*} .
$$

Annihilation and creation operators

- For each $x \in \mathscr{S}^{\prime}(\mathbf{R})$, the annihilation operator $a(x)$ is defined by

$$
a(x)\left(0, \cdots, 0, \xi^{\otimes n}, 0, \cdots\right)=\left(0, \cdots, 0,\langle x, \xi\rangle \xi^{\otimes(n-1)}, 0, \cdots\right) .
$$

Then for each $x \in \mathscr{S}^{\prime}(\mathbf{R}), a(x) \in \mathscr{L}((E),(E))$. The adjoint $a^{*}(x) \in \mathscr{L}\left((E)^{*},(E)^{*}\right)$ of $a(x)$ is called the creation operator and we have

$$
a^{*}(x)\left(0, \cdots, 0, \xi^{\otimes n}, 0, \cdots\right)=\left(0, \cdots, 0, x \widehat{\otimes} \xi^{\otimes n}, 0, \cdots\right) .
$$

NOTE. Let $\zeta \in \mathscr{S}(\mathbf{R})$. Then we have

$$
a(\zeta) \in \mathscr{L}\left((E)^{*},(E)^{*}\right), \quad a^{*}(\zeta) \in \mathscr{L}((E),(E))
$$

Put

$$
a_{t} \equiv a\left(\boldsymbol{\delta}_{t}\right), \quad a_{t}^{*} \equiv a^{*}\left(\boldsymbol{\delta}_{t}\right) .
$$

Then the pair $\left\{a_{t}, a_{t}^{*} ; t \in \mathbf{R}\right\}$ is called the quantum white noise.
For each $\kappa_{l, m} \in\left(E^{*}\right)^{\otimes(l+m)}$, the integral kernel operator $\Xi_{l, m}\left(\kappa_{l, m}\right)$ is formally expressed as

$$
\Xi_{l, m}\left(\kappa_{l, m}\right)=\int_{\mathbf{R}^{l+m}} \kappa_{l, m}\left(s_{1}, \ldots, s_{l}, t_{1}, \ldots, t_{m}\right) a_{s_{1}}^{*} \cdots a_{s_{l}}^{*} a_{t_{1}} \cdots a_{t_{m}} d s_{1} \cdots d s_{l} d t_{1} \cdots d t_{m}
$$

For exponential vector,

$$
\phi_{\xi}=\left(1, \xi, \frac{\xi^{\otimes 2}}{2!}, \cdots, \frac{\xi^{\otimes n}}{n!}, \cdots\right), \quad \xi \in E,
$$

we have

$$
\left\langle\left\langle\Xi_{l, m}\left(\kappa_{l, m}\right) \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle=\left\langle\kappa_{l, m}, \xi^{\otimes m} \otimes \eta^{\otimes l}\right\rangle e^{\langle\xi, \eta\rangle}
$$

where $\langle\langle\cdot, \cdot\rangle\rangle$ is the canonical complex bilinear form on $(E)^{*} \times(E)$.

Generalized Gross Laplacians

- For each $U \in \mathscr{L}\left(E, E^{*}\right)$ there exists a unique $\tau_{U} \in E^{*} \times E^{*}$ such that

$$
\left\langle\tau_{U}, \eta \otimes \xi\right\rangle=\langle U \xi, \eta\rangle, \quad \xi, \eta \in E
$$

and then the generalized Gross Laplacian $\Delta_{G}(U)$ is defined by

$$
\Delta_{\mathrm{G}}(U)=\Xi_{0,2}\left(\tau_{U}\right)=\int_{\mathbf{R}^{2}} \tau_{U}\left(t_{1}, t_{2}\right) a_{t_{1}} a_{t_{2}} d t_{1} d t_{2} \in \mathscr{L}((E),(E)) .
$$

In particular, for $U=I, \Delta_{\mathrm{G}}(I)$ is called the Gross Laplacian Δ_{G}.

- The adjoint of $\Delta_{\mathrm{G}}(U)$ is denoted by $\Delta_{\mathrm{G}}^{*}(U)$ which is represented by

$$
\Delta_{\mathrm{G}}^{*}(U)=\Xi_{2,0}\left(\tau_{U}\right)=\int_{\mathbf{R}^{2}} \tau_{U}\left(t_{1}, t_{2}\right) a_{t_{1}}^{*} a_{t_{2}}^{*} d t_{1} d t_{2} \in \mathscr{L}\left((E)^{*},(E)^{*}\right) .
$$

Conservation Operators

- For each $S \in \mathscr{L}\left(E, E^{*}\right)$, the operator $\Lambda(S)$ defined by

$$
\Lambda(S)=\Xi_{1,1}\left(\tau_{S}\right)=\int_{\mathbf{R}^{2}} \tau_{S}(s, t) a_{s}^{*} a_{t} d s d t \in \mathscr{L}\left((E),(E)^{*}\right)
$$

is called the conservation operator. In particular, $N \equiv \Lambda(I)$ is the number operator.

Quantum White Noise Derivatives

Fock Expansion and Motivation

- A fundamental consequence of quantum white noise theory that every white noise operator $\Xi \in \mathscr{L}\left((E),(E)^{*}\right)$ admits a Fock expansion:

$$
\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)
$$

with

$$
\Xi_{l, m}\left(\kappa_{l, m}\right)=\int_{\mathbf{R}^{l+m}} \kappa_{l, m}\left(s_{1}, \ldots, s_{l}, t_{1}, \ldots, t_{m}\right) a_{s_{1}}^{*} \cdots a_{s_{l}}^{*} a_{t_{1}} \cdots a_{t_{m}} d s_{1} \cdots d s_{l} d t_{1} \cdots d t_{m}
$$

In this sense, every white noise operator can be considered as a "function" of quantum white noise:

$$
\Xi=\Xi\left(a_{s}, a_{t}^{*} ; s, t \in \mathbf{R}\right),
$$

and so we are naturally interested in its derivatives:

$$
D_{t}^{+} \Xi=\frac{\delta \Xi}{\delta a_{t}^{*}}, \quad D_{t}^{-} \Xi=\frac{\delta \Xi}{\delta a_{t}} .
$$

Creation- and Annihilation-Derivatives

For any white noise operator $\Xi \in \mathscr{L}\left((E),(E)^{*}\right)$ and $\zeta \in E$, the commutators

$$
[a(\zeta), \Xi]=a(\zeta) \Xi-\Xi a(\zeta), \quad-\left[a^{*}(\zeta), \Xi\right]=\Xi a^{*}(\zeta)-a^{*}(\zeta) \Xi
$$

are well defined white noise operators, i.e., belongs to $\mathscr{L}\left((E),(E)^{*}\right)$. We define

$$
D_{\zeta}^{+} \Xi=[a(\zeta), \Xi], \quad D_{\zeta}^{-} \Xi=-\left[a^{*}(\zeta), \Xi\right] .
$$

DEFINITION. $D_{\zeta}^{+} \Xi$ and $D_{\zeta}^{-} \Xi$ are respectively called the creation derivative and annihilation derivative of Ξ, and both together the quantum white noise derivatives of Ξ.

THEOREM. For each $\zeta \in E$, the quantum white noise derivatives $D_{\zeta}^{ \pm}$are continuous linear operators from $\mathscr{L}\left((E),(E)^{*}\right)$ into itself.

THEOREM. Let $\zeta \in E$ and let $\Xi \in \mathscr{L}\left((E),(E)^{*}\right)$ with Fock expansion $\Xi=$ $\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right)$. Then,

$$
D_{\zeta}^{-} \Xi=\sum_{l=0}^{\infty} \sum_{m=1}^{\infty} m \Xi_{l, m-1}\left(\kappa_{l, m} * \zeta\right), \quad D_{\zeta}^{+} \Xi=\sum_{l=1}^{\infty} \sum_{m=0}^{\infty} l \Xi_{l-1, m}\left(\zeta * \kappa_{l, m}\right) .
$$

Examples. By using the canonical commutation relation (CCR): for each $\zeta \in E$, we have

$$
\begin{aligned}
D_{\zeta}^{-} \Delta_{\mathrm{G}}(S) & =a\left(S \zeta+S^{*} \zeta\right), & D_{\zeta}^{+} \Delta_{\mathrm{G}}(S) & =0 \\
D_{\zeta}^{-} \Delta_{\mathrm{G}}^{*}(S) & =0, & D_{\zeta}^{+} \Delta_{\mathrm{G}}^{*}(S) & =a^{*}\left(S \zeta+S^{*} \zeta\right), \\
D_{\zeta}^{-} \Lambda(S) & =a^{*}(S \zeta), & D_{\zeta}^{+} \Lambda(S) & =a\left(S^{*} \zeta\right) \\
D_{\zeta}^{-} a(x) & =\langle x, \zeta\rangle, & D_{\zeta}^{+} a(x) & =0 \\
D_{\zeta}^{-} a^{*}(x) & =0, & D_{\zeta}^{+} a^{*}(x) & =\langle x, \zeta\rangle
\end{aligned}
$$

In fact, we obtain that $D_{\zeta}^{+} \Delta_{\mathrm{G}}(S)=\left[a(\zeta), \int_{\mathbf{R}^{2}} \tau_{S}\left(t_{1}, t_{2}\right) a_{t_{1}} a_{t_{2}} d t_{1} d t_{2}\right]=0$ and

$$
\begin{aligned}
a_{t_{1}} a_{t_{2}} a^{*}(\zeta) & =a_{t_{1}}\left[a^{*}(\zeta) a_{t_{2}}+\zeta\left(t_{2}\right)\right]=\left[a^{*}(\zeta) a_{t_{1}}+\zeta\left(t_{1}\right)\right] a_{t_{2}}+\zeta\left(t_{2}\right) a_{t_{1}} \\
& =a^{*}(\zeta) a_{t_{1}} a_{t_{2}}+\zeta\left(t_{1}\right) a_{t_{2}}+\zeta\left(t_{2}\right) a_{t_{1}}
\end{aligned}
$$

and so

$$
\begin{aligned}
D_{\zeta}^{-} \Delta_{\mathrm{G}}(S) & =\Delta_{\mathrm{G}}(S) a^{*}(\zeta)-a^{*}(\zeta) \Delta_{\mathrm{G}}(S)=\int_{\mathbf{R}^{2}}\left[\tau_{S}\left(t_{1}, t_{2}\right)\left(\zeta\left(t_{1}\right) a_{t_{2}}+\zeta\left(t_{2}\right) a_{t_{1}}\right)\right] d t_{1} d t_{2} \\
& =a(S \zeta)+a\left(S^{*} \zeta\right)
\end{aligned}
$$

Wick Derivations

Wick Product

For any $\Xi_{1}, \Xi_{2} \in \mathscr{L}\left((E),(E)^{*}\right)$, the Wick product (or normal-ordered product) $\Xi_{1} \diamond \Xi_{2} \in \mathscr{L}((E),(E$ is well-defined as satisfying the characteristic properties:

$$
a_{t} \diamond \Xi=\Xi \diamond a_{t}=\Xi a_{t}, \quad a_{t}^{*} \diamond \Xi=\Xi \diamond a_{t}^{*}=a_{t}^{*} \Xi .
$$

- $\left(\mathscr{L}\left((E),(E)^{*}\right), \diamond\right)$ is a commutative algebra.

Wick Derivations

A continuous linear map $\mathscr{D}: \mathscr{L}\left((E)^{*},(E)\right) \rightarrow \mathscr{L}\left((E),(E)^{*}\right)$ is called a Wick derivation if

$$
\mathscr{D}\left(\Xi_{1} \diamond \Xi_{2}\right)=\left(\mathscr{D} \Xi_{1}\right) \diamond \Xi_{2}+\Xi_{1} \diamond\left(\mathscr{D} \Xi_{2}\right), \quad \Xi_{1}, \Xi_{2} \in \mathscr{L}\left((E),(E)^{*}\right)
$$

THEOREM. For each $\zeta \in E$, the creation and annihilation derivatives $D_{\zeta}^{ \pm}$are Wick derivations.

THEOREM. Let $\mathscr{D}: \mathscr{L}\left((E)^{*},(E)\right) \rightarrow \mathscr{L}\left((E),(E)^{*}\right)$ be a Wick derivation. Then there exist $F, G \in E^{*} \otimes \mathscr{L}\left((E),(E)^{*}\right)$ such that

$$
\mathscr{D}=\int_{T} F(t) \diamond D_{t}^{+} d t+\int_{T} G(t) \diamond D_{t}^{-} d t .
$$

For each $\Xi \in \mathscr{L}\left((E),(E)^{*}\right)$, the map

$$
D_{(\cdot)}^{ \pm} \Xi: E \ni z \longmapsto D_{z}^{ \pm} \Xi \in \mathscr{L}\left((E),(E)^{*}\right)
$$

is continuous, i.e., $D_{(\cdot)}^{ \pm} \Xi \in \mathscr{L}\left(E, \mathscr{L}\left((E),(E)^{*}\right)\right) \cong E^{*} \otimes \mathscr{L}\left((E),(E)^{*}\right)$. Therefore, by the previous Theorem, we have

$$
D_{\Xi^{ \pm}}^{ \pm} \equiv \int_{\mathbf{R}_{+}}\left(D_{t}^{ \pm} \Xi\right) \diamond D_{t}^{ \pm} d t
$$

is a Wick derivation from $\mathscr{L}\left((E)^{*},(E)\right)$ into $\mathscr{L}\left((E),(E)^{*}\right)$.
PROPOSITION. Let $\mathscr{T}=\sum_{m=0}^{\infty} \Xi_{1, m}\left(\kappa_{1, m}\right) \in \mathscr{L}((E),(E))$ and $\mathscr{U}=\sum_{l=0}^{\infty} \Xi_{l, 1}\left(\kappa_{l, 1}\right) \in$ $\mathscr{L}\left((E)^{*},(E)^{*}\right)$. Then we have

$$
D_{\mathscr{T}+}^{-} \Xi \Xi \mathscr{T}-\Xi \diamond \mathscr{T}, \quad D_{\mathscr{U}}^{+}-\Xi=\mathscr{U} \Xi-\Xi \diamond \mathscr{U}, \quad \Xi \in \mathscr{L}\left((E),(E)^{*}\right)
$$

Examples. Let $S \in \mathscr{L}\left(E, E^{*}\right)$. If $S \in \mathscr{L}(E, E) \cong E \otimes E^{*}$, then $\Lambda(S)=\Xi_{1,1}\left(\tau_{S}\right) \in \mathscr{L}((E),(E))$ and so we obtain that

$$
D_{\Lambda(S)^{+}}^{-}(\Xi)=\Xi \Lambda(S)-\Xi \diamond \Lambda(S), \quad \Xi \in \mathscr{L}\left((E),(E)^{*}\right) .
$$

Similarly, if $S \in \mathscr{L}\left(E^{*}, E^{*}\right) \cong E^{*} \otimes E$, then $\Lambda(S)=\Xi_{1,1}\left(\tau_{S}\right) \in \mathscr{L}\left((E)^{*},(E)^{*}\right)$ and so we obtain that

$$
D_{\Lambda(S)^{-}}^{+}=\Lambda(S) \Xi-\Xi \diamond \Lambda(S), \quad \Xi \in \mathscr{L}\left((E),(E)^{*}\right)
$$

and then we have

$$
\begin{aligned}
& D_{\Lambda\left(S_{1}\right)+}^{-} \Lambda(K)=\Lambda\left(K S_{1}\right), \quad D_{\Lambda\left(S_{2}\right)^{-}}^{+} \Lambda(K)=\Lambda\left(S_{2} K\right), \\
& D_{\Lambda\left(S_{1}\right)^{+}}^{-} \Delta_{\mathrm{G}}^{*}(A)=0, \quad D_{\Lambda\left(S_{2}\right)}^{+} \Delta_{\mathrm{G}}^{*}(A)=\Delta_{\mathrm{G}}^{*}\left(S_{2} A+A S_{2}^{*}\right), \\
& D_{\Lambda\left(S_{1}\right)^{+}}^{-} \Delta_{\mathrm{G}}(B)=\Delta_{\mathrm{G}}\left(S_{1}^{*} B+B S_{1}\right), \quad D_{\Lambda\left(S_{2}\right)^{-}}^{+} \Delta_{\mathrm{G}}(B)=0, \\
& D_{\Lambda\left(S_{1}\right)^{+}}^{-} a^{*}(\zeta)=0, \quad D_{\Lambda\left(S_{2}\right)^{-}}^{+} a^{*}(\zeta)=a^{*}\left(S_{2} \zeta\right), \\
& D_{\Lambda\left(S_{1}\right)^{+}}^{-} a(\eta)=a\left(S_{1}^{*} \eta\right), \quad D_{\Lambda\left(S_{2}\right)^{-}}^{+} a(\eta)=0 .
\end{aligned}
$$

Differential Equations Associated with Wick Derivations

Consider the following differential equation:

$$
\begin{equation*}
\mathscr{D} \Xi=G \diamond \Xi \tag{ৎ}
\end{equation*}
$$

associated with the Wick derivation $\mathscr{D}: \mathscr{L}\left((E),(E)^{*}\right) \rightarrow \mathscr{L}\left((E),(E)^{*}\right)$.
Wick Exponential: For $Y \in \mathscr{L}\left((E),(E)^{*}\right)$ we define

$$
\operatorname{wexp} Y=\sum_{n=0}^{\infty} \frac{1}{n!} Y^{\diamond n},
$$

whenever the series converges in $\mathscr{L}\left((E),(E)^{*}\right)$.

Differential Equations

THEOREM. Assume that there exists an operator $Y \in \mathscr{L}\left((E),(E)^{*}\right)$ such that $\mathscr{D} Y=G$ and wexp Y is defined in $\mathscr{L}\left((E),(E)^{*}\right)$. Then every solution to (Ω) is of the form:

$$
\Xi=(\operatorname{wexp} Y) \diamond F,
$$

where $F \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfying $\mathscr{D} F=0$.

Example. Let us consider the (system of) differential equations:
(\%)

$$
\left\{\begin{array}{l}
D_{\zeta}^{+} \Xi=0 \\
D_{\zeta}^{-} \Xi=0, \quad \zeta \in E
\end{array}\right.
$$

If Ξ is a solution of the given system, Ξ is given by

$$
\Xi=\sum_{m=0}^{\infty} \Xi_{0, m}\left(\kappa_{0, m}\right), \quad \Xi=\sum_{l=0}^{\infty} \Xi_{l, 0}\left(\kappa_{l, 0}\right) .
$$

Consequently, a white noise operator Ξ satisfying (\&) is a scalar operator. Thus, the irreducibility of the canonical commutation relation is reproduced.
Example. Let us consider the differential equation:

$$
D_{\zeta}^{-} \Xi=2 a(\zeta) \diamond \Xi, \quad \zeta \in E .
$$

We need to find $Y \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfying $D_{\zeta}^{-} Y=2 a(\zeta)$. In fact, $Y=\Delta_{G}$ is a solution. Moreover, it is easily verified that wexp Δ_{G} is defined in $\mathscr{L}((E),(E))$. Then, a general solution to the given equation is of the form:

$$
\Xi=\left(\operatorname{wexp} \Delta_{\mathrm{G}}\right) \diamond F,
$$

where $D_{\zeta}^{-} F=0$ for all $\zeta \in E$.

- Canonical Commutation Relations

We now focus on the white noise operators of the form:

$$
\begin{equation*}
b(\zeta)=b_{S, T}(\zeta)=a(S \zeta)+a^{*}(T \zeta) \tag{0.1}
\end{equation*}
$$

where $S, T \in \mathscr{L}(E, E)$ and $\zeta \in E$. We note that $b(\zeta) \in \mathscr{L}((E),(E)) \cap \mathscr{L}\left((E)^{*},(E)^{*}\right)$. The adjoint operators are given by

$$
\begin{equation*}
b^{*}(\zeta)=b_{S, T}^{*}(\zeta)=a(T \zeta)+a^{*}(S \zeta) \tag{0.2}
\end{equation*}
$$

THEOREM We maintain the notations and assumptions as above. The necessary and sufficient condition for $b(\zeta)$ and $b^{*}(\eta)$ satisfying the CCR, i.e.,

$$
[b(\zeta), b(\eta)]=\left[b^{*}(\zeta), b^{*}(\eta)\right]=0, \quad\left[b(\zeta), b^{*}(\eta)\right]=\langle\zeta, \eta\rangle, \quad \zeta, \eta \in E
$$

is that

$$
\begin{equation*}
T^{*} S-S^{*} T=0, \quad S^{*} S-T^{*} T=I \tag{D1}
\end{equation*}
$$

Implementation Problem:

Our implementation problem is to find a white noise operator $U \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfying

$$
\begin{align*}
U a(\zeta) & =b(\zeta) U \tag{1}\\
U a^{*}(\zeta) & =b^{*}(\zeta) U \tag{2}
\end{align*}
$$

i.e.,

$$
\begin{aligned}
& (E) \xrightarrow{U}(E)^{*} \\
& a(\zeta) \downarrow \quad \downarrow(\zeta) \\
& (E) \underset{U}{\longrightarrow}(E)^{*}
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
D_{S \zeta}^{+} U & =\left[a(\zeta-S \zeta)-a^{*}(T \zeta)\right] \diamond U, \tag{3}\\
\left(D_{\zeta}^{-}-D_{T \zeta}^{+}\right) U & =\left[a^{*}(S \zeta-\zeta)+a(T \zeta)\right] \diamond U . \tag{4}
\end{align*}
$$

THEOREM Assume that S is invertible and that $T^{*} S=S^{*} T$. Then a white noise operator $U \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfies the intertwining property:

$$
U a(\zeta)=b(\zeta) U, \quad \zeta \in E
$$

if and only if U is of the form

$$
U=e^{-\frac{1}{2} \Delta_{\mathrm{G}}^{*}\left(T S^{-1}\right)} \diamond \Gamma\left(\left(S^{-1}\right)^{*}\right) \diamond F,
$$

where $F \in \mathscr{L}\left((E),(E)^{*}\right)$ is an arbitrary white noise operator satisfying $D_{\zeta}^{+} F=0$ for all $\zeta \in E$.

THEOREM Assume the following conditions:

(i) S is invertible;
(ii) $T^{*} S=S^{*} T$;
(iii) $S^{*} S-T^{*} T=I$;
(iv) $S T^{*}=T S^{*}$.

Then a white noise operator $U \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfies the intertwining property:

$$
U a^{*}(\zeta)=b^{*}(\zeta) U, \quad \zeta \in E
$$

if and only if U is of the form:

$$
U=e^{-\frac{1}{2} \Delta_{\mathrm{G}}^{*}\left(T S^{-1}\right)} \Gamma\left(\left(S^{-1}\right)^{*}\right) e^{\frac{1}{2} \Delta_{\mathrm{G}}\left(S^{-1} T\right)} \diamond G,
$$

where $G \in \mathscr{L}\left((E),(E)^{*}\right)$ is an arbitrary white noise operator satisfying $\left(D_{\zeta}^{-}-D_{T \zeta}^{+}\right) G=0$ for all $\zeta \in E$.

THEOREM Assumptions being the same as in the previous theorems, a white noise operator $U \in \mathscr{L}\left((E),(E)^{*}\right)$ satisfies the following intertwining properties:

$$
U a(\zeta)=b(\zeta) U, \quad U a^{*}(\zeta)=b^{*}(\zeta) U, \quad \zeta \in E
$$

if and only if U is of the form:

$$
U=C e^{-\frac{1}{2} \Delta_{\mathrm{G}}^{*}\left(T S^{-1}\right)} \Gamma\left(\left(S^{-1}\right)^{*}\right) e^{\frac{1}{2} \Delta_{\mathrm{G}}\left(S^{-1} T\right)},
$$

where $C \in \mathbb{C}$.
The operator

$$
U=C e^{-\frac{1}{2} \Delta_{\mathrm{G}}^{*}\left(T S^{-1}\right)} \Gamma\left(\left(S^{-1}\right)^{*}\right) e^{\frac{1}{2} \Delta_{\mathrm{G}}\left(S^{-1} T\right)}
$$

is called a Bogoliubov transformation.

General Implementation Problem:

For each given $\zeta_{1}, \eta_{2} \in E, \eta_{1}, \zeta_{2} \in E^{*}, S_{1} \in \mathscr{L}(E, E), S_{2} \in \mathscr{L}\left(E^{*}, E^{*}\right)$ and $\mathscr{K} \in \mathscr{L}((E),(E))$, we verify certain conditions under which there exists a white noise operator $\mathscr{V} \in \mathscr{L}\left((E),(E)^{*}\right)$ such that

$$
\mathscr{V}\left(a^{*}\left(\zeta_{1}\right)+a\left(\eta_{1}\right)+\Lambda\left(S_{1}\right)+\mathscr{K}\right)=\left(a^{*}\left(\zeta_{2}\right)+a\left(\eta_{2}\right)+\Lambda\left(S_{2}\right)\right) \mathscr{V} .
$$

NOTE. If $\mathscr{V}_{V^{\dagger}}=1$, then we have

$$
\left\langle\left\langle\mathscr{V}^{\dagger} \phi_{0}, \overline{\mathscr{V}^{\dagger} \phi_{0}}\right\rangle\right\rangle=1,
$$

and so $\mathscr{V}^{\dagger} \phi_{0}$ gives a vector state. Therefore, the distribution of

$$
a^{*}\left(\zeta_{1}\right)+a\left(\eta_{1}\right)+\Lambda\left(S_{1}\right)+\mathscr{K}
$$

with respect to the vector state $\mathscr{V}^{\dagger} \phi_{0}$ coincides with the distribution of

$$
a^{*}\left(\zeta_{2}\right)+a\left(\eta_{2}\right)+\Lambda\left(S_{2}\right)
$$

with respect to the vacuum state ϕ_{0}.

Consider the modified implementation problem:

$$
\mathscr{V}\left(a^{*}\left(\zeta_{1}\right)+a\left(\eta_{1}\right)+\Lambda\left(S_{1}\right)\right)+\mathscr{V} \diamond \widetilde{\mathscr{K}}=\left(a^{*}\left(\zeta_{2}\right)+a\left(\eta_{2}\right)+\Lambda\left(S_{2}\right)\right) \mathscr{V}
$$

which is equivalent to

$$
\mathscr{D} \mathscr{V}=\left(a^{*}\left(\zeta_{2}-\zeta_{1}\right)+a\left(\eta_{2}-\eta_{1}\right)+\Lambda\left(S_{2}-S_{1}\right)-\widetilde{\mathscr{K}}\right) \diamond \mathscr{V}
$$

with the Wick derivation \mathscr{V} given by

$$
\mathscr{D}=D_{\zeta_{1}}^{-}+D_{\Lambda\left(S_{1}\right)^{+}}^{-}-\left(D_{\Lambda\left(S_{2}\right)^{-}}^{+}+D_{\eta_{2}}^{+}\right) .
$$

Put

$$
\begin{equation*}
\widetilde{\mathscr{K}}=\Delta_{\mathrm{G}}^{*}\left(A_{3}\right)+a^{*}\left(\zeta_{3}\right)+\Lambda\left(S_{3}\right)+a\left(\eta_{3}\right)+\Delta_{\mathrm{G}}\left(B_{3}\right)+\widetilde{k}, \tag{K}
\end{equation*}
$$

where $A_{3}, B_{3}, S_{3} \in \mathscr{L}\left(E, E^{*}\right), \zeta_{3}, \eta_{3} \in E^{*}$ and $\widetilde{k} \in \mathbf{C}$,

THEOREM If there exist $\zeta, \eta \in E^{*}, A \in \mathscr{A}_{\mathrm{s}}(E, E), B \in \mathscr{A}_{\mathrm{s}}\left(E, E^{*}\right)$ and $S \in \mathscr{L}\left(E, E^{*}\right)$ such that the equations:

$$
\begin{align*}
S_{2} A+A S_{2}^{*} & =A_{3}, \\
S_{1}^{*} B+B S_{1} & =-B_{3}, \\
S \zeta_{1}-S_{2} \zeta-2 A \eta_{2} & =\zeta_{2}-\zeta_{3} \\
2 B \zeta_{1}+S_{1}^{*} \eta-S^{*} \eta_{2} & =-\eta_{1}-\eta_{3} \\
S S_{1}-S_{2} S & =-S_{3}, \\
\left\langle\eta_{2}, \zeta\right\rangle-\left\langle\zeta_{1}, \eta\right\rangle & =\widetilde{k}
\end{align*}
$$

are satisfied, then every solution \mathscr{V} of (\diamond) is of the form

$$
\mathscr{V}=e^{\Delta_{\mathrm{G}}^{*}(A)} e^{a^{*}(\zeta)} \Gamma(S) e^{a(\eta)} e^{\Delta_{\mathrm{G}}(B)} \diamond F
$$

for a white noise operator $F \in \mathscr{L}\left((E),(E)^{*}\right)$ such that $\mathscr{D} F=0$.

THEOREM If there exist $\zeta, \eta \in E^{*}, A \in \mathscr{A}_{\mathrm{s}}(E, E), B \in \mathscr{A}_{\mathrm{s}}\left(E, E^{*}\right)$ and $S \in \mathscr{L}(E, E)$ such that $A_{3} B \in \mathscr{L}_{1}(E, E), S$ is invertible and (\%) holds, then for any constant $C \in \mathbf{C} \backslash\{0\}$ the white noise operator of the form

$$
\mathscr{V}=C e^{\Delta_{\mathrm{G}}^{*}(A)} e^{a^{*}(\zeta)} \Gamma(S) e^{a(\eta)} e^{\Delta_{\mathrm{G}}(B)}
$$

is a solution of $(\boldsymbol{\oplus})$ with \mathscr{K} given by

$$
\mathscr{K}=\mathscr{V}^{-1}(\mathscr{V} \diamond \widetilde{\mathscr{K}}),
$$

where $\widetilde{\mathscr{K}}$ is given as in $(\widetilde{\mathscr{K}})$.

COROLLARY. If there exist $\zeta, \eta \in E^{*}$ and $S \in \mathscr{L}\left(E, E^{*}\right)$ such that the equations:

$$
\begin{aligned}
S \zeta_{1}-S_{2} \zeta & =\zeta_{2}, \\
S_{1}^{*} \eta-S^{*} \eta_{2} & =-\eta_{1}, \\
S S_{1}-S_{2} S & =0, \\
\left\langle\eta_{2}, \zeta\right\rangle-\left\langle\zeta_{1}, \eta\right\rangle & =\widetilde{k} .
\end{aligned}
$$

are satisfied with $\widetilde{k}=k$, then every solution \mathscr{V} of

$$
\mathscr{V}\left(a^{*}\left(\zeta_{1}\right)+a\left(\eta_{1}\right)+\Lambda\left(S_{1}\right)+k\right)=\left(a^{*}\left(\zeta_{2}\right)+a\left(\eta_{2}\right)+\Lambda\left(S_{2}\right)\right) \mathscr{V}
$$

is of the form

$$
\mathscr{V}=e^{a^{*}(\zeta)} \Gamma(S) e^{a(\eta)} \diamond F
$$

for a white noise operator $F \in \mathscr{L}\left((E),(E)^{*}\right)$ such that $\mathscr{D} F=0$.

General Transformations

For each $U \in \mathscr{L}\left(E, E^{*}\right), V \in \mathscr{L}(E, E)$, we have

$$
\mathscr{G}_{U, V ; \omega}=\Gamma(V) e^{\Delta_{\mathrm{G}}(U)} e^{a(\omega)} .
$$

Then $\mathscr{G}_{U, V ; \omega} \in \mathscr{L}((E),(E))$ and the adjoint of $\mathscr{G}_{U, V ; \omega}$ is denoted by $\mathscr{F}_{U, V ; \omega}$ and then we have

$$
\mathscr{F}_{U, V ; \omega}=e^{a^{*}(\omega)} e^{\Delta_{\mathrm{G}}^{*}(U)} \Gamma\left(V^{*}\right) \in \mathscr{L}\left((E)^{*},(E)^{*}\right) .
$$

- Y-Transforms

For each $U_{1}, U_{2} \in \mathscr{L}\left(E, E^{*}\right), V_{1}, V_{2} \in \mathscr{L}(E, E)$ and $\omega_{1}, \omega_{2} \in E^{*}$, put

$$
\Upsilon_{U_{2}, V_{2}, \omega_{2} ; U_{1}, V_{1}, \omega_{1}}=\mathscr{F}_{U_{2}, V_{2} ; \omega_{2}} \underbrace{\mathscr{G}_{U_{1}, V_{1}: \omega_{1}}}_{\text {AffineTransform }}=e^{a^{*}\left(\omega_{2}\right)} \underbrace{\overbrace{\Delta_{\mathbf{G}}^{*}\left(U_{2}\right)}^{\Gamma\left(V_{2}^{*}\right)} \underbrace{\Gamma\left(V_{1}\right) e^{\Delta_{\mathrm{G}}\left(U_{1}\right)}}_{\text {Fourier-Gauss }}}_{\text {Fourier-Mehler }} e^{\text {Bogoliubov }} e_{\text {Quantum Girsanov- }}^{a\left(\omega_{1}\right)}
$$

which is called the Υ-Transform and motivated by

$$
e^{\left(a^{*}+a+c\right)^{2}} \longleftrightarrow e^{a^{*}+a^{* 2}+a^{*} a+a^{2}+a+c} \longleftrightarrow c e^{a^{*}} e^{a^{*^{2} 2}} e^{a^{*} a} e^{a^{2}} e^{a},
$$

where c is a constant.

Unitary Implementations

- Complex Gaussian Space

Let μ^{\prime} be the Gaussian measure on $E_{\mathbf{R}}^{*}$ with mean 0 and variance $1 / 2$ of which the characteristic function is given by

$$
\int_{E_{\mathbf{R}}^{*}} e^{i\langle x, \xi\rangle} \mu^{\prime}(d x)=e^{-|\xi|_{0}^{2} / 4}, \quad \xi \in E_{\mathbf{R}}
$$

In view of the topological isomorphism $E^{*} \cong E_{\mathbf{R}}^{*} \times E_{\mathbf{R}}^{*}$, we define a probability measure $v=\mu^{\prime} \times \mu^{\prime}$ on E^{*} by

$$
v(d z)=\mu^{\prime}(d x) \mu^{\prime}(d y), \quad z=x+i y \in E^{*}
$$

The probability space $\left(E^{*}, v\right)$ is called the complex Gaussian space.
For each $\Xi \in \mathscr{L}((E),(E))$, with help of the resolution of the identity we have

$$
\left\langle\left\langle\Xi \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle=\int_{E^{*}}\left\langle\left\langle\Xi \phi_{\xi}, \phi_{z}\right\rangle\right\rangle\left\langle\left\langle\phi_{\bar{z}}, \phi_{\eta}\right\rangle\right\rangle v(d z)
$$

and so

$$
\left\langle\left\langle\Xi_{1} \Xi_{2} \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle=\left\langle\left\langle\Xi_{2} \phi_{\xi}, \Xi_{1}^{*} \phi_{\eta}\right\rangle\right\rangle=\int_{E^{*}}\left\langle\left\langle\Xi_{2} \phi_{\xi}, \phi_{z}\right\rangle\right\rangle\left\langle\left\langle\phi_{\bar{z}}, \Xi_{1}^{*} \phi_{\eta}\right\rangle\right\rangle v(d z)
$$

which is useful for the study of normal forms of operators.

- Normal Ordered Forms

THEOREM Let $A \in \mathscr{L}\left(E, E^{*}\right)$ and $B \in \mathscr{L}\left(E^{*}, E\right)$ be symmetric such that for complete orthonormal basis $\left\{e_{k}\right\}_{k=1}^{\infty} \subset E$ of $H, A e_{k}=\alpha_{k} e_{k}$ and $B e_{k}=\beta_{k} e_{k}$ with $\alpha_{k}+\beta_{k}<1$ for $k=1,2, \cdots$. Then we have

$$
e^{\Delta_{\mathrm{G}}(A)} e^{\Delta_{\mathrm{G}}^{*}(B)}=[\operatorname{det}(1-4 B A)]^{-1 / 2} e^{\Delta_{\mathrm{G}}^{*}\left(B(1-4 B A)^{-1}\right)} \Gamma\left((1-4 B A)^{-1}\right) e^{\Delta_{\mathrm{G}}\left(A(1-4 B A)^{-1}\right)} .
$$

- Unitary Implementations

THEOREM Let $U_{i} \in \mathscr{L}_{2}(E, E)$ and $\omega_{i} \in E, i=1,2$. Let $K \in \mathbf{C}$ and $B \in \mathscr{L}(E, E)$. Then

$$
\Xi \equiv K e^{\Delta_{\mathrm{G}}^{*}\left(U_{2}\right)} \Gamma(B) e^{\Delta_{\mathrm{G}}\left(U_{1}\right)}
$$

is unitary on $\Gamma(H)$ if and only if $\left[\operatorname{det}\left(1-4 U_{1}^{\dagger} U_{1}\right)\right]^{1 / 4}=K=\left[\operatorname{det}\left(1-4 U_{2}^{\dagger} U_{2}\right)\right]^{1 / 4}$ and

$$
\begin{aligned}
& \overline{U_{1}}+B^{\dagger}\left[U_{2} W_{2}\right]^{*} \bar{B}=0=\overline{U_{2}}+\bar{B}\left[U_{1} W_{1}\right]^{*} B^{\dagger} ; \\
& U_{1}+B^{*}\left[U_{2}^{\dagger} W_{2}\right]^{*} B=0=U_{2}+B\left[U_{1}^{\dagger} W_{1}\right]^{*} B^{*} ; \\
& B^{*} W_{2}^{*} \bar{B}=I=B W_{1}^{*} B^{\dagger}, \quad W_{i}=\left(1-4 U_{i}^{\dagger} U_{i}\right)^{-1}, \quad i=1,2 .
\end{aligned}
$$

THEOREM Let $U_{i} \in \mathscr{L}_{2}(E, E)$ and $\omega_{i} \in E, i=1,2$. Let $K \in \mathbf{C}$ and $B \in \mathscr{L}(E, E)$. Then

$$
\Xi \equiv K e^{a^{*}\left(\omega_{2}\right)} e^{\Delta_{\mathrm{G}}^{*}\left(U_{2}\right)} \Gamma(B) e^{\Delta_{\mathrm{G}}\left(U_{1}\right)} e^{a\left(\omega_{1}\right)}
$$

is unitary on $\Gamma(H)$ if and only if

$$
\begin{aligned}
& {\left[\operatorname{det}\left(1-4 U_{1}^{\dagger} U_{1}\right)\right]^{1 / 4} }=K \\
& \overline{U_{1}}+B^{\dagger}\left[U_{2} W_{2}\right]^{*} \bar{B}=0 \\
&=\overline{\left.\operatorname{det}\left(1-4 U_{2}^{\dagger} U_{2}\right)\right]^{1 / 4} ; \bar{B}\left[U_{1} W_{1}\right]^{*} B^{\dagger} ;} \\
& U_{1}+B^{*}\left[U_{2}^{\dagger} W_{2}\right]^{*} B=0 \\
& B^{*} W_{2}^{*} \bar{B}=I=B U_{2}+B\left[U_{1}^{\dagger} W_{1}\right]^{*} B^{*} ; \\
& B^{*}\left[\left(U_{2}^{\dagger} W_{2}+\left(U_{2}^{\dagger} W_{2}\right)^{*}\right) \omega_{2}+W_{2}^{*} \overline{\omega_{2}}\right]+\omega_{1}=0 \\
& 2 \Re\left[\left(U_{1}^{\dagger} W_{1}+\left(U_{1}^{\dagger} W_{1}\right)^{*}\right) \omega_{1}+W_{1}^{*} \overline{\omega_{1}}\right]+\omega_{2} ; \\
& 2 \Re\left\langle\left(U_{2}^{\dagger} W_{2}\right)^{*} \omega_{2}, \omega_{2}\right\rangle+\left\langle\left(W_{2}^{*} \overline{\omega_{2}}, \omega_{2}\right\rangle\right.=0 \\
&=2 \Re\left\langle\left(U_{1}^{\dagger} W_{1}\right)^{*} \omega_{1}, \omega_{1}\right\rangle+\left\langle\left(W_{1}^{*} \overline{\omega_{1}}, \omega_{1}\right\rangle,\right.
\end{aligned}
$$

where $W_{i}=\left(1-4 U_{i}^{\dagger} U_{i}\right)^{-1}, i=1,2$.

COROLLARY Let $U_{i} \in \mathscr{L}_{2}(E, E)$ and $\omega_{i} \in E, i=1,2$. Let $K \in \mathbf{C}$ and $B \in \mathscr{L}(E, E)$. Suppose that U_{1} and U_{2} are symmetric. Then

$$
\Xi \equiv K e^{a^{*}\left(\omega_{2}\right)} e^{\Delta_{\mathrm{G}}^{*}\left(U_{2}\right)} \Gamma(B) e^{\Delta_{\mathrm{G}}\left(U_{1}\right)} e^{a\left(\omega_{1}\right)}
$$

is unitary on $\Gamma(H)$ if and only if

$$
\begin{aligned}
& {\left[\operatorname{det}\left(1-4 U_{1}^{\dagger} U_{1}\right)\right]^{1 / 4}=K=\left[\operatorname{det}\left(1-4 U_{2}^{\dagger} U_{2}\right)\right]^{1 / 4} ;} \\
& \overline{U_{1}}+B^{\dagger}\left[U_{2} W_{2}\right]^{*} \bar{B}=0=\overline{U_{2}}+\bar{B}\left[U_{1} W_{1}\right]^{*} B^{\dagger} ; \\
& B^{*} W_{2}^{*} \bar{B}=I=B W_{1}^{*} B^{\dagger} ; \\
& B^{*}\left[\left(U_{2}^{\dagger} W_{2}+\left(U_{2}^{\dagger} W_{2}\right)^{*}\right) \omega_{2}+W_{2}^{*} \overline{\omega_{2}}\right]+\omega_{1}=0=B\left[\left(U_{1}^{\dagger} W_{1}+\left(U_{1}^{\dagger} W_{1}\right)^{*}\right) \omega_{1}+W_{1}^{*} \overline{\omega_{1}}\right]+\omega_{2} ; \\
& 2 \mathfrak{R}\left\langle\left(U_{2}^{\dagger} W_{2}\right)^{*} \omega_{2}, \omega_{2}\right\rangle+\left\langle\left(W_{2}^{*} \overline{\omega_{2}}, \omega_{2}\right\rangle=0=2 \mathfrak{R}\left\langle\left(U_{1}^{\dagger} W_{1}\right)^{*} \omega_{1}, \omega_{1}\right\rangle+\left\langle\left(W_{1}^{*} \overline{\omega_{1}}, \omega_{1}\right\rangle .\right.\right.
\end{aligned}
$$

THEOREM Let $S \in \mathfrak{A} G L(E)$ and $T \in \mathscr{L}_{2}(E, E)$ satisfying $(\bigcirc 1)$ and $S T^{*}-T S^{*}=0$. Let $\omega \in E$. For the operator

$$
\mathscr{U}_{S, T, \omega}=e^{-a^{*}\left(\left(S^{-1}\right)^{*} \omega\right)} e^{-\Delta_{\mathrm{G}}^{*}\left(T S^{-1}\right)} \Gamma\left(S^{-1}\right) e^{\Delta_{\mathrm{G}}\left(S^{-1} T\right)} e^{a\left(\left(I-S^{-1} T\left(S^{-1}\right)^{*}\right) \omega\right)},
$$

$K \mathscr{U}_{S, T, \omega}$ is unitary if and only if $S^{-1} T, T S^{-1} \in \mathfrak{A}_{2}(E, E)$ and S, T satisfy the following equations:

$$
\begin{aligned}
{\left[\operatorname{det}\left(1-\left(S^{-1} T\right)^{\dagger} S^{-1} T\right)\right]^{1 / 4} } & =K=\left[\operatorname{det}\left(1-\left(T S^{-1}\right)^{\dagger} T S^{-1}\right)\right]^{1 / 4} ; \\
S^{-1} T S & =\overline{S T S^{-1} ;} \\
S^{-1} T\left(S^{-1}\right)^{\dagger} & =\overline{\left(S^{-1}\right)^{\dagger} T S^{-1}} ; \\
1-\left(T S^{-1}\right)^{\dagger} T S^{-1} & =\overline{S^{-1}}\left(S^{-1}\right)^{*} ; \\
1-\left(S^{-1} T\right)^{\dagger} S^{-1} T & =\left(S^{-1}\right)^{*} \overline{S^{-1}} ; \\
B^{*}\left[\left(U_{2}^{\dagger} W_{2}+\left(U_{2}^{\dagger} W_{2}\right)^{*}\right) \omega_{2}+W_{2}^{*} \overline{\omega_{2}}\right]+\omega_{1} & =0=B\left[\left(U_{1}^{\dagger} W_{1}+\left(U_{1}^{\dagger} W_{1}\right)^{*}\right) \omega_{1}+W_{1}^{*} \overline{\omega_{1}}\right]+\omega_{2} ; \\
2 \Re\left\langle\left(U_{2}^{\dagger} W_{2}\right)^{*} \omega_{2}, \omega_{2}\right\rangle+\left\langle\left(W_{2}^{*} \overline{\omega_{2}}, \omega_{2}\right\rangle\right. & =0=2 \Re\left\langle\left(U_{1}^{\dagger} W_{1}\right)^{*} \omega_{1}, \omega_{1}\right\rangle+\left\langle\left(W_{1}^{*} \overline{\omega_{1}}, \omega_{1}\right\rangle,\right.
\end{aligned}
$$

where $\omega_{1}=\left(I-S^{-1} T\left(S^{-1}\right)^{*}\right) \omega$ and $\omega_{2}=-\left(S^{-1}\right)^{*} \omega$,

Thank you very much !

The 6th Jikji Workshop: Infinite Dimensional Analysis and Quantum Probability
 January 8-12, 2011
 Chungbuk National University (Cheongju 361-763, Korea)
 http://crs.chungbuk.ac.kr/ hhlee/Jikji2011.html

Arrival Date: 7 (Friday) January, 2011
Departure Date: 13 (Thursday) January, 2011

- Winter School: 8 (Saturday) ~ 9 (Sunday) January

This winter school consists of special lectures covering recent developments of infinite dimensional analysis and quantum probability, with wide applications to various research fields, and discussions for future directions.

Lecturers

- L. Accardi (Centro Vito Volterra)
- K. B. Sinha (JNCASR)
- Workshop: 10 (Monday) ~ 12 (Wednesday) January

- Organizing Committee:

- Un Cig Ji (Chungbuk National University): uncigji@chungbuk.ac.kr
- Jaeseong Heo (Hanyang University): hjs@hanyang.ac.kr
- Hun Hee Lee (Chungbuk National University): hhlee@chungbuk.ac.kr
- Hyun Jae Yoo (Hankyong National University): yoohj@hknu.ac.kr
- Registrations: For convenience of organizing the workshop, all participants are kindly asked to submit the registration form until October 31, 2010 to a member of organizers by e-mail. There is no registration fee. Kindly note that, from the limit of our budget, the total number of participants is restricted, and so if you are interested in participating in the 6th Jikji Workshop, then please send an e-mail to any organizer in advance.
- Accommodations: The accommodations for all participants will be provided by the organizers. Unfortunately, we can not support for the travels of all participants due to the limited grants, however we might be able to support travel expenses for a limited number of participants. In case you need support for the travel expenses, then please contact the organizers in advance.

